Overview of Isotope Harvesting Efforts at FRIB

Katharina Domnanich^{1,2}

¹Department of Chemistry, Michigan State University, East Lansing, MI, USA ²Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA

At the Facility for Rare Isotope Beams (FRIB), exotic secondary beams are created by the fragmentation of a high-power primary beam. In this process only a small fraction of the beam products are selected and co-produced fragments are intercepted by accelerator components, while the unreacted primary beam will be stopped in a water-traversed beam dump. The accumulated radionuclides in all these components represent an invaluable resource and can be collected through targeted isotope harvesting.

I will give an overview of the aqueous isotope harvesting process, focusing on the collection of 62 Zn from a stopped 78 Kr beam. The 62 Zn decays to the short-lived 62 Cu ($t_{1/2}$ = 9.7 min) and currently, both find collective application in nuclear medicine for the 62 Zn/ 62 Cu PET generator. The developed purification method facilitated the successful isolation of 62 Zn. Furthermore, we have started to develop the chemistry required to set up a 62 Zn/ 62 Cu generator.

Isotope collection from the solid phase is another possible isotope harvesting mode. Recently, we have begun exploring the radioisotopes ¹⁸⁹Pt and ¹⁹⁷Pt, which are relevant for nuclear medicine, especially in the form of radio-cisplatin. We developed a separation process to extract Pt from the collector material and impurities. Preparations are underway for a beam experiment to isolate the Pt radioisotopes and validate our method with radioactive materials.

Isotope harvesting is generally non-selective towards the production of a particular isotope, often yielding mixed samples rather than radioisotopically pure ones. Introducing a mass-separation step could expand the availability of pure isotopes. FRIB's infrastructure includes a suitable mass analyzer, enabling the development of a prototype mass separator. This talk will overview our initial mass-separation experiment where we investigated the release and extraction of stable ⁶¹Ni, and provide an outlook on possible extensions to the isotope harvesting program.